47 research outputs found

    Deep Learning for Network Traffic Monitoring and Analysis (NTMA): A Survey

    Get PDF
    Modern communication systems and networks, e.g., Internet of Things (IoT) and cellular networks, generate a massive and heterogeneous amount of traffic data. In such networks, the traditional network management techniques for monitoring and data analytics face some challenges and issues, e.g., accuracy, and effective processing of big data in a real-time fashion. Moreover, the pattern of network traffic, especially in cellular networks, shows very complex behavior because of various factors, such as device mobility and network heterogeneity. Deep learning has been efficiently employed to facilitate analytics and knowledge discovery in big data systems to recognize hidden and complex patterns. Motivated by these successes, researchers in the field of networking apply deep learning models for Network Traffic Monitoring and Analysis (NTMA) applications, e.g., traffic classification and prediction. This paper provides a comprehensive review on applications of deep learning in NTMA. We first provide fundamental background relevant to our review. Then, we give an insight into the confluence of deep learning and NTMA, and review deep learning techniques proposed for NTMA applications. Finally, we discuss key challenges, open issues, and future research directions for using deep learning in NTMA applications.publishedVersio

    A comparative node evaluation model for highly heterogeneous massive‐scale Internet of Things‐Mist networks

    Get PDF
    Internet of Things (IoT) is a new technology that is driving the connection of billions of devices around the world. Because these devices are often resource‐constrained and very heterogeneous, this presents unique challenges. To address some of these challenges, new paradigms of Edge and Fog are emerging to bring computational resources of the IoT networks from remote devices like cloud closer to the end‐devices. Mist computing is a new paradigm that attempts to make use of the more resource‐rich nodes that are closer than Edge nodes to end‐users. Since these nodes might have enough resources to host services, execute tasks or even run containers, the utilization of network resources might be improved, and delay reduced by utilizing these nodes. The nodes must, therefore, be assessed to determine which nodes should offer resources to other nodes based on their situation. In this article, a new comparative assessment model for ranking Mist nodes in highly heterogeneous massive‐scale IoT networks in order to discover nodes that can offer their resources is proposed. The Mist nodes are evaluated based on parameters like resources, connections, applications, and environmental parameters to heuristically compare the neighbors with a novel learning‐to‐rank method to predict a suitability score for each node. The most suitable neighbor is then selected based on the score, with load balancing accomplished by a second chance method. When evaluating the performance, the results show that the proposed method succeeds in identifying resource‐rich nodes, while considering the selection of other nodes.publishedVersio

    TONTA: Trend-based Online Network Traffic Analysis in ad-hoc IoT networks

    Get PDF
    Internet of Things (IoT) refers to a system of interconnected heterogeneous smart devices communicatingwithout human intervention. A significant portion of existing IoT networks is under the umbrella of ad-hoc andquasi ad-hoc networks. Ad-hoc based IoT networks suffer from the lack of resource-rich network infrastructuresthat are able to perform heavyweight network management tasks using, e.g. machine learning-based NetworkTraffic Monitoring and Analysis (NTMA) techniques. Designing light-weight NTMA techniques that do notneed to be (re-) trained has received much attention due to the time complexity of the training phase. In thisstudy, a novel pattern recognition method, called Trend-based Online Network Traffic Analysis (TONTA), isproposed for ad-hoc IoT networks to monitor network performance. The proposed method uses a statisticallight-weight Trend Change Detection (TCD) method in an online manner. TONTA discovers predominant trendsand recognizes abrupt or gradual time-series dataset changes to analyze the IoT network traffic. TONTA isthen compared with RuLSIF as an offline benchmark TCD technique. The results show that TONTA detectsapproximately 60% less false positive alarms than RuLSIF.publishedVersio

    Clustering objectives in wireless sensor networks: A survey and research direction analysis

    Get PDF
    Wireless Sensor Networks (WSNs) typically include thousands of resource-constrained sensors to monitor their surroundings, collect data, and transfer it to remote servers for further processing. Although WSNs are considered highly flexible ad-hoc networks, network management has been a fundamental challenge in these types of net- works given the deployment size and the associated quality concerns such as resource management, scalability, and reliability. Topology management is considered a viable technique to address these concerns. Clustering is the most well-known topology management method in WSNs, grouping nodes to manage them and/or executing various tasks in a distributed manner, such as resource management. Although clustering techniques are mainly known to improve energy consumption, there are various quality-driven objectives that can be realized through clustering. In this paper, we review comprehensively existing WSN clustering techniques, their objectives and the network properties supported by those techniques. After refining more than 500 clustering techniques, we extract about 215 of them as the most important ones, which we further review, catergorize and classify based on clustering objectives and also the network properties such as mobility and heterogeneity. In addition, statistics are provided based on the chosen metrics, providing highly useful insights into the design of clustering techniques in WSNs.publishedVersio

    A Survey and Future Directions on Clustering: From WSNs to IoT and Modern Networking Paradigms

    Get PDF
    Many Internet of Things (IoT) networks are created as an overlay over traditional ad-hoc networks such as Zigbee. Moreover, IoT networks can resemble ad-hoc networks over networks that support device-to-device (D2D) communication, e.g., D2D-enabled cellular networks and WiFi-Direct. In these ad-hoc types of IoT networks, efficient topology management is a crucial requirement, and in particular in massive scale deployments. Traditionally, clustering has been recognized as a common approach for topology management in ad-hoc networks, e.g., in Wireless Sensor Networks (WSNs). Topology management in WSNs and ad-hoc IoT networks has many design commonalities as both need to transfer data to the destination hop by hop. Thus, WSN clustering techniques can presumably be applied for topology management in ad-hoc IoT networks. This requires a comprehensive study on WSN clustering techniques and investigating their applicability to ad-hoc IoT networks. In this article, we conduct a survey of this field based on the objectives for clustering, such as reducing energy consumption and load balancing, as well as the network properties relevant for efficient clustering in IoT, such as network heterogeneity and mobility. Beyond that, we investigate the advantages and challenges of clustering when IoT is integrated with modern computing and communication technologies such as Blockchain, Fog/Edge computing, and 5G. This survey provides useful insights into research on IoT clustering, allows broader understanding of its design challenges for IoT networks, and sheds light on its future applications in modern technologies integrated with IoT.acceptedVersio

    An outlier detection method to improve gathered datasets for network behavior analysis in IoT

    Get PDF
    Outlier detection is a subfield of data mining to determine data points that notably deviate from the rest of a dataset. Their deviation can indicate that these data points are generated by errors and should therefore be removed or repaired. There are many reasons for outliers in a network dataset such as human or instrument errors, noise or system behavior changes. On the other side, Network Behavior Analysis (NBA) is a way to monitor traffic and recognize unusual actions in a network. Analyzing data trends in NBA methods is a common way to interpret network situation. Outliers can deviate and produce erroneous trends that influence the results of the NBA methods. This paper presents an approach that based on a method for trend detection divides the data set into subsets where contextual outliers are discovered. The outliers can then be removed to have a clear dataset that better shows the network behavior when using NBA methods. Increasing the accuracy and reliability are the goals of our method. We compare the proposed method with the Hampel method on simulated IoT network data.publishedVersio

    From statistical- to machine learning-based network traffic prediction

    Get PDF
    Nowadays, due to the exponential and continuous expansion of new paradigms such as Internet of Things (IoT), Internet of Vehicles (IoV) and 6G, the world is witnessing a tremendous and sharp increase of network traffic. In such large-scale, heterogeneous, and complex networks, the volume of transferred data, as big data, is considered a challenge causing different networking inefficiencies. To overcome these challenges, various techniques are introduced to monitor the performance of networks, called Network Traffic Monitoring and Analysis (NTMA). Network Traffic Prediction (NTP) is a significant subfield of NTMA which is mainly focused on predicting the future of network load and its behavior. NTP techniques can generally be realized in two ways, that is, statistical- and Machine Learning (ML)-based. In this paper, we provide a study on existing NTP techniques through reviewing, investigating, and classifying the recent relevant works conducted in this field. Additionally, we discuss the challenges and future directions of NTP showing that how ML and statistical techniques can be used to solve challenges of NTP.publishedVersio

    Antimicrobial activity of endophytic bacterial populations isolated from medical plants of Iran

    Get PDF
    Endophytic actinobacteria colonize inside the plant tissues without causing damages to the host plant. Since these microorganisms colonize in the different parts of plants and can stop plant disease, they have been applied as biological agents for controlling human diseases. The aim of this study was molecular identification and measuring the antimicrobial activity of endophytic Actinomycetes isolated from medicinal plants of Iran. Materials and Methods: The total of 23 medicinal plant samples were collected, sterilized, and crushed. Small pieces of the crushed samples were then cultured directly on three selective media. Grown colonies were identified by 16S rRNA gene sequencing method. Each isolate was cultured in TSB medium and then antimicrobial compound was extracted using ethyl acetate and tested against the target bacteria. Results: Sixteen out of 23 bacterial isolates (69%) exhibited antimicrobial activity against the selected pathogenic bacteria, such as Bacillus cereus, Staphylococcus aureus, Bacillus subtilis, Klebsiella pneumoniae, Citrobacter freundii, Proteus mi-rabilis, Shigella flexneri and Escherichia coli. Conclusion: Our Study showed a high phylogenetic diversity and the potent antibiotic activity of endophytic bacteria in medicinal plants of Iran. © 2017, Tehran University of Medical Science. All rights reserved
    corecore